минобрнауки россии

Волжский политехнический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования "Волгоградский государственный технический университет"

ВПИ (филиал) ВолгГТУ

УТВЕРЖДАЮ
Декан факультета
2021 г.

Техническая термодинамика

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Химия, технология и оборудование химических производств

Учебный план 15.03.04-15-1-3933_zaoch_coкp.plx

Направление - 15.03.04 - Автоматизация технологических процессов и производств профиль - Автоматизация технологических процессов и производств (по отраслям)

Квалификация бакалавр

Форма обучения заочная

Общая трудоемкость 3 ЗЕТ

Часов по учебному плану 72 Виды контроля на курсах:

в том числе: зачеты 1

 аудиторные занятия
 10

 самостоятельная работа
 62

Распределение часов дисциплины по курсам

Курс	1	1	Итого		
Вид занятий	УП	УП РП		010	
Лекции	4	4	4	4	
Лабораторные	6	6	6	6	
Итого ауд.	10	10	10	10	
Контактная работа	10	10	10	10	
Сам. работа	62	62	62	62	
Итого	72	72	72	72	

Программу составил(и): к.т.н, доцент кафедры «ВХТО» С.В. Лапшина
Рабочая программа одобрена на заседании кафедры
Химия, технология и оборудование химических производств
Зав. кафедрой д.х.н., профессор Бутов Г.М.
Рабочая программа дисциплины
Техническая термодинамика
разработана в соответствии с ФГОС ВО:
Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 15.03.04 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ (уровень бакалавриата) (приказ Минобрнауки России от 12.03.2015г. №200)
составлена на основании учебного плана:
Направление - 15.03.04 - Автоматизация технологических процессов и производств профиль - Автоматизация технологических процессов и производств (по отраслям) утвержденного учёным советом вуза от 30.08.2017 протокол № 1.
Рабочая программа одобрена ученым советом факультета
Протокол от 30.08.2021 г. № 1
Срок действия программы: 2021-2025 уч.г. Декан факультета

Химия, технология и оборудование химических производств

Протокол от

Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2018-2019 учебном году на заседании кафедры Химия, технология и оборудование химических производств Протокол от 2018 г. № Зав. кафедрой д.х.н., профессор Бутов Г.М. Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2019-2020 учебном году на заседании кафедры Химия, технология и оборудование химических производств 2019 г. № Протокол от Зав. кафедрой д.х.н., профессор Бутов Г.М. Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2020-2021 учебном году на заседании кафедры Химия, технология и оборудование химических производств Протокол от 2020 г. № Зав. кафедрой д.х.н., профессор Бутов Г.М. Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры

2021 г. №

Зав. кафедрой д.х.н., профессор Бутов Г.М.

Год	Раздел РП	Внесенные изменения

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 изучение основных термодинамических закономерностей, грамотной инженерной оценки термодинамических и тепловых явлений в системах и агрегатах; навыков термодинамического исследования процессов и циклов тепловых машин, теплотехнических расчетов теплообменных аппаратов и устройств, систем нагрева и охлаждения.

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП						
Ці	икл (раздел) ООП:	Б1.В					
2.1	2.1 Требования к предварительной подготовке обучающегося:						
2.1.1	Дисциплина «Термодин дисциплин:	амика» основывается на знаниях полученных при изучении следующих учебных					
2.1.2	.2 Математика						
2.1.3	3 Физика						
2.2	Дисциплины и практи предшествующее:	ки, для которых освоение данной дисциплины (модуля) необходимо как					
2.2.1	Знания, полученные при изучении дисциплины:	изучении дисциплины, как в последующей профессиональной деятельности, так и при					
2.2.2	Технологические проце	ссы автоматизированных производств					
2.2.3	Автоматизация технолог	гических процессов и производств					

3. КОМП	3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ							
	(МОДУЛЯ)							
ОПК-1: способностью использовать основные закономерности, действующие в процессе изготовления продукции								
требуемого ка	чества, заданного количества при наименьших затратах общественного труда							
Знать: основные закономерности, действующие в процессе изготовления продукции требуемого качества								
Уметь:	меть: использовать закономерности, действующие в процессе изготовления продукции требуемого качества							
Владеть:	Владеть: навыками использования основных закономерностей, действующих в процессе изготовления продукции							
ПК-2: способн	ЈСРБУС ВЕГОИЈАТЕ ГЕНОВЛАНЕ И В <i>С</i> ИОМО РАТЕ А БИЗЈЕ МАЧЕРИЛИКІ ЗАЛИТАХ ОТОВАЕТВЕН ИЗДЕЛИИ, Е ПОСОБЫ							
	сновных технологических процессов, аналитические и численные методы при разработке их							
	ких моделей, методы стандартных испытаний по определению физико-механических свойств и							
	ких показателей материалов и готовых изделий, стандартные методы их проектирования,							
прогрессивны	не методы эксплуатации изделий							
Знать:								
Уметь:	Уметь:							
Владеть:								

В результате освоения дисциплины обучающийся должен

3.1	Знать:							
3.1.1	1. Теоретические основы взаимного превращения теплоты и работы.							
3.1.2	2. Основы теории теплообмена и расчета теплообменных устройств.							
3.1.3	3. Характерные схемы и принципы работы тепловых и компрессорных машин.							
3.2	Уметь:							
3.2.1	1. Анализировать степень термодинамического совершенства тепловых машин и устройств.							
3.2.2	2. Определять основные направления термодинамического совершенствования тепловых двигателей.							
3.2.3	3. Самостоятельно работать с технической литературой при решении конкретных теплоэнергетических задач.							
3.3	Владеть:							
3.3.1								

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)								
Код	Код Наименование разделов и тем /вид Семестр / Часов Компетен- Литература Интре Примечание							
занятия	занятия/	Курс		ции		ракт.		
	Раздел 1.							

1.1	Термодинамическая система. Рабочее	1	0,16	ОПК-1	Л1.1 Л1.2	0	
	тело. Основные параметры состояния. Равновесное и не равновесное состояния. Термодинамический процесс. Равновесные, обратимые, неравновесные, необратимые процессы. Идеальный и реальный газы. Их уравнения. /Лек/	1			Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1		
1.2	Газовая смесь, способы ее задания. Работа термодинамической системы. Работа изменения объема, располагаемая работа. Представление работы в рv — диаграмме. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.3	Теплота, как форма передачи энергии и представление ее в ТS — диаграмме. Теплоемкость, ее зависимость от характера процесса. Уравнение Майера. Молекулярно-кинетическая теория теплоемкости. Показатель адиабаты. Внутренняя энергия, энтальпия, энтропия. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.4	Инженерные методы определения подводимой (отводимой) теплоты через теплоемкость. Апроксимационные формулы. Средняя и истинная теплоемкость. Определение конечной температуры системы. Теплоемкость газовой смеси. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.5	Первый закон термодинамики. Закон сохранения энергии. Возможность существования вечного двигателя первого рода. Основные формулировки. Изменение энтропии обратимых и необратимых процессов, изменения состояния. Циклы. Цикл Карно. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.6	Изопроцессы (изохорный, изобарный, изотермический, адиабатный процесс). Анализ распределения энергии в них на основе первого закона термодинамики. Соотношение параметров, работа изменения объема, теплота. Изображение процессов в рv — и TS— диаграммах. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.7	Реальные газы. Свойства реальных газов. Фазовое равновесие и фазовые переходы. Теплота фазовых переходов. Тройная и критическая точки. Уравнения состояния реальных газов и их анализ. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.8	Водяной пар как реальный газ, рабочее тело и его получение. Процессы парообразования и перегрева пара в руи ТS -диаграммах. Определение параметров состояния паров. Таблицы водяного пара, hS- и ts- диаграммы. Устройства для получения водяного пара. Котлы с естественной и принудительной циркуляцией. /Лек/	1	0,16	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	

	_				1	1	
1.9	Инженерные методы расчетов состояния и процессов изменения состояния водяного пара с использованием таблиц, hS- и TS-диаграмм. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.10	Влажный воздух. Основные характеристики. hd- диаграмма, инженерные методы расчета процессов изменения состояния влажного воздуха. Кондиционирование. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.11	Термодинамика потока газа и дросселирование. Основные зависимости и первый закон термодинамики для открытых систем. Сопловое и диффузорное течения. Закон геометрического обращения воздействия. Определение скорости и расхода при истечении идеального газа. Максимальный расход, критическое давление и критическая скорость. Температура торможения. Истечение через суживающееся и комбинированное сопла. Расчет истечения водяного пара с применением НS- диаграммы. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.12	Второй закон термодинамики и необратимые процессы. Потеря работоспособности системы. Понятие об эксергии. Эксергия вещества в замкнутом объеме, эксергия потока вещества и потока теплоты. Эксергия как функция состояния. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.13	Предмет и задачи теории теплообмена. Значение теплообмена в химической технологии. Основные понятия и определения. Виды переноса теплоты. Закон Фурье, коэффициент теплопроводности, дифференциальное уравнение теплопроводности, условия однозначности. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.14	Стационарная теплопроводность. Теплопроводность плоской и цилиндрической стенок при граничных условиях 1 и 3 рода. Пути интенсификации теплопередачи. Тепловая изоляция плоской и цилиндрической стенок. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.15	Нестационарная теплопроводность. Охлаждение (нагревание) пластины. Уравнение температурного поля. Определение количества передаваемой теплоты. Охлаждение тел конечных размеров. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.16	Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньютона-Рихмана. Система дифференциальных уравнений конвективного теплообмена. Условия однозначности. Решение задач конвективного теплообмена на основе теории подобия. Частные случаи теплоотдачи. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	

1.17	Теплообмен излучением между телами. Основные понятия и определения. Теплообмен излучением между телами произвольно расположенными в пространстве и разделенными в пространстве и разделенными прозрачной средой. Теплообмен излучением между газом и поверхностью стенки в топочной камере. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.18	Теплообменные аппараты. Назначение и классификация теплообменных аппаратов. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.19	Топливо и его сжигание. Виды топлива, их классификация, элементарный состав, основные характеристики. Основы горения топлива. Расчеты количества воздуха для сгорания 1 кг топлива. Методы и способы сжигания топлива. Типы сжигающих устройств, их тепловой баланс и КПД. Продукты сгорания топлива. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.20	Топливо и его сжигание. Виды топлива, их классификация, элементарный состав, основные характеристики. Основы горения топлива. Расчеты количества воздуха для сгорания 1 кг топлива. Методы и способы сжигания топлива. Типы сжигающих устройств, их тепловой баланс и КПД. Продукты сгорания топлива. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.21	Обратный цикл Карно. Принцип работы и анализ цикла воздушной холодильной установки. Принцип работы и анализ цикла парокомпрессионной холодильной установки. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.22	Принцип работы и основной цикл ПСУ (цикл Ренкина). Термодинамический КПД и факторы, влияющие на его повышение. Пути совершенствования паросиловых установок (цикл с повторным перегревом пара, бинарные циклы и др.). Основы теплофикации. Перспективы применения ПСУ в технологии нефтехимических производств. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.23	Принцип работы парогенератора и его тепловой баланс. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	
1.24	Принцип работы и цикл газотурбинных установок (ГТУ). Термический и внутренний КПД. Пути повышения эффективности ГТУ, перспективы их применения в технологии нефтехимических производств. /Лек/	1	0,17	ОПК-1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	

1.25	Исследование термодинамического процесса в поршневом компрессоре /Лаб/	1	1	ПК-2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1Л3. 1 Л3.2 Л3.3 Э1	0	
1.26	Исследование процесса истечения воздуха через суживающееся сопло /Лаб/	1	1	ПК-2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1Л3. 1 Л3.2 Л3.3 Э1	0	
1.27	Стационарные методы исследования теплопроводности /Лаб/	ĺ	2	ПК-2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1Л3. 1 Л3.2 Л3.3 Э1	0	
1.28	Исследование теплоотдачи при обтекании трубы потоком воздуха /Лаб/	1	2	ПК-2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1Л3. 1 Л3.2 Л3.3 Э1	0	
1.29	Контрольная работа /Ср/	1	62	ОПК-1 ПК- 2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Э1	0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Рабочая программа дисциплины обеспечена фондом оценочных средств для проведения входного, текущего контроля и промежуточной аттестации. Фонд включает типовые расчётные задания, лабораторные работы, задания в тестовой форме, вопросы к зачету.

Вопросы к зачету:

- 1. Теплотехника и ее роль в решении проблем современной энергетики.
- 2. Основные сведения о топливе. Классификация горючих и их характеристики.
- 3. Высшая и низшая теплота сгорания топлива. Условное топливо.
- 4. Основные сведения о горении топлива.
- 5. Гомогенное и гетерогенное горение.
- 6. Расчет процессов горения топлива. Задачи и основные принципы расчета.
- 7. Определение теоретически необходимого для сгорания горючего количества окислителя.
- 8. Коэффициент избытка воздуха. Особенности горения богатых и бедных смесей.
- 9. Кинетическое и диффузионное горение топлива. Скорость горения.
- 10. Горение твердого топлива. Основные стадии горения.
- 11. Техническая термодинамика, ее метод. Основные понятия и определения.
- 12. Первый закон термодинамики. Работа и теплота. Свойства pV- и ТS- диаграмм.
- 13. Методы определения подводимой к системе теплоты. Теплоемкость системы.
- 14. Политропный процесс изменения состояния идеального газа.
- 15. Анализ изохорного и изобарного процессов изменения состояния идеального газа.
- 16. Первый закон термодинамики для потока газа. Соотношение соплового и диффузорного течения.
- 17. Закон геометрического обращения воздействия.
- 18. Определение скорости и расхода газа. Кризис течения.
- 19. Поршневой компрессор. Принцип действия, индикаторная диаграмма, анализ процессов, происходящих в компрессоре.
- 20. Многоступенчатый компрессор. Преимущества многоступенчатого сжатия.
- 21. Реальные газы и их свойства. pV- диаграмма реального газа.
- 22. Способы определения параметров состояния реальных газов. –TS и –hS диаграммы реального газа.
- 23. Методы расчета процессов изменения состояния реальных газов.

- 24. Теплопередача. Основные понятия и определения теории теплообмена. Виды переноса теплоты.
- 25 Тепловые балансы.
- 26. Основное уравнение теплопередачи.
- 27. Температурное поле и температурный градиент.
- 28. Передача тепла теплопроводностью.
- 29. Дифференциальное уравнение теплопроводности.
- 30. Теплопроводность плоской и цилиндрической стенки.
- 31. Тепловое излучение.
- 32. Передача тепла конвекцией (конвективный перенос).
- 33. Теплоотдача. Основное уравнение. Факторы, влияющие на теплоотдачу.
- 34. Теплопередача.
- 35 Второй закон термодинамики. Цикл Карно и его термический КПД.
- 36 Принцип действия и цикл газотурбинной установки.
- 37 Принцип действия и цикл паросиловой установки. Термический КПД цикла.

5.2. Темы письменных работ

Предусмотрены аудиторные контрольные работы.

Тема контрольной работы: «Топливо, газовые смеси и теплоемкость», «Термодинамические процессы и циклы с газообразным рабочим телом»

5.3. Фонд оценочных средств

Рабочая программа дисциплины обеспечена фондом оценочных средств для проведения входного, текущего контроля и промежуточной аттестации.

5.4. Перечень видов оценочных средств

Используемые формы текущего контроля: аудиторные контрольные работы; типовые расчётные задания; лабораторные работы; устный опрос; устное сообщение; тестирование.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)								
6.1. Рекомендуемая литература								
6.1.1. Основная литература								
	Авторы, составители	Заглавие	Издательство, год	Колич-во				
Л1.1	Бахшиева, Л. Т.[и др.]	Техническая термодинамика и теплотехника: учебное пособие	М.: Академия, 2006	1				
Л1.2	Луканин В.Н., Шатров М.Г.	Теплотехника: Учебник для вузов. 6-е изд., стер.	Москва: Высшая школа, 2008	1				
Л1.3	Тишин Олег Александрович, Синьков Алексей Владимирович, Мокрецова И.С.	Тепловые процессы	Волгоград: ВолгГТУ, 2010	39				
Л1.4	Кудинов В.А.	Теплотехника.(электронный ресурс): учебное пособие	ИНФРА-М, 2015	эл. изд.				
Л1.5			,	эл. изд.				
Л1.6	Кудинов, В. А.	Техническая термодинамика и теплопередача: учебник	М.: Юрайт, , 2013	2				
6.1.2. Дополнительная литература								
	Авторы, составители	Заглавие	Издательство, год	Колич-во				
Л2.1	Лапшина, С.В.[и др.]	Техническая термодинамика и теплотехника. Вып. 7 [Электронный ресурс] : учебное пособие - http://library.volpi.ru	Волгоград: ВолгГТУ, 2014	эл. изд.				
6.1.3. Методические разработки								
	Авторы, составители	Заглавие	Издательство, год	Колич-во				
Л3.1	Лапшина С.В.	Исследование термодинамических процессов в поршневом компрессоре: Методические указания	Волжский, 2016	эл. изд.				
Л3.2	Лапшина, С.В.	Исследование процесса истечения воздуха через суживающееся сопло [Электронный ресурс] : методические указания - http://lib.volpi.ru	Волжский, ВПИ (филиал) ВолгГТУ, 2016	эл. изд.				

	Авторы, составители	Заглавие	Издательство, год	Колич-во			
Л3.3	Лапшина, С. В.	Стационарные методы определения коэффициента	Волжский: [Б.и.],	эл. изд.			
		теплопроводности [Электронный ресурс]: методические	2017				
		указания - http://lib.volpi.ru					
6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"							
Э1	Электронная библиотека ВПИ (филиал) ВолгГТУ: http://library.volpi.ru/csp/library/StartPage.csp						
Э2							
6.3.1 Перечень программного обеспечения							
7.3.1.1	MS Windows XP						
7.3.1.2	Подписка Micro-soft Imagine Premium						
7.3.1.3	ID df8605e9-c758-42d6-a856-ae0ba9714cc4						
7.3.1.4	Сублицензион-ный договор № Тг000150654 (подписка на 2017-2018гг)						
7.3.1.5	Сублицензион-ный договор № КИС-193-2016 (подписка на 2016-2017гг)						
7.3.1.6	Сублицензион-ный договор № КИС-108-2015 (подписка на 2015-2016гг)						
7.3.1.7	Сублицензион-ный договор № КИС-099-2014 (подписка на 2014-2015гг)						
7.3.1.8	Сублицензион-ный договор № Tr018575 (подписка на 2013-2014гг)						
7.3.1.9	MS Office 2003						
7.3.1.1	Лицензия №43344861 от 26.12.2007 (бессрочная)						
0							
		6.3.2 Перечень информационных справочных систем					

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1 Помещения для проведения лекционныхи лабораторных занятий укомплектованы необходимой специализированной учебной мебелью и техническими средствами для представления учебной информации студентам, имеет 56 посадочных места Телевизор LQ 50 PT 350 " R " 50, 1 компьютер, видеопроектор Aser Proektor P 134 W, экран на треноге FCTM-1102180x180.Лабораторные работы проводятся в лаборатории кафедры аудитория: Лаб. установки: «Трубопровод», «Кожухотрубчатый теплообменник», «Определение коэффициента теплопроводности», «Поршневой компрессор», «Истечение воздуха через сопло», «Теплоотдача при обтекании трубы потоком воздуха», учебный стенд «Гидростенд». В аудитории 24 посадочных места. Аудитория для самостоятельной работы имеет учебную мебель на 30 посадочных мест, 2 компьютера. Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду.

8. МЕТОДИЧЕСТКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Самоконтроль

Самоконтроль знаний, полученных учащимися при изучении разделов (освоение теоретического материала, выполнение практических заданий) рекомендуется осуществлять с помощью оценочных средств «Контрольные вопросы» и «Тестовые вопросы», представленных в Фонде оценочных средств и в УЭМКД «Техническая термодинамика».

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорно-двигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
- методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-

двигательного аппарата);

• устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.